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A l-ATRIX TR^TMEKT OF THE QEMBBU. FRODLEI^l OF LtAST SQUARES 
CONSIDERING  GORFtELATED OBSERVATIONS 

ABSTHAGT 

The most general type problem considered in least sq^es 
is  formulated and solved with the aid of matrix algebra for the 
case in '.»hich the observations have the  -eneral multivariate 
^rmi  distribution.    The  criterion for adjustment i* the prxn- 
ciple of maximum likelihood.    Such related topics as the inver- 
sion o? the normal equations, variance-covariance propagation, 
direct adjustment of functions of observations,   statistical 
tests of significance,  and the ^^^"^/f^^J^1^" ^^^ 
the adjustment are considered.    It is pointed out that the re-.ults 
of the  conventional method of least squares are special cases 
of the present theory. 
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1. INTRODOCTION 

In recent years several writers have employed matri-r a-^i«.<- 4    * _ 
special results for the nethod of least sq^^   D^efflJ^m   Ü %£? 
matrix algebra in considering the least squares detSSwfÜ!    LI]  «rvloyed 
sion coefficients.    Along the same line   AtSJ ?W??f M o     ? S^Ä ^TVT 

äte^rs^d^n^Tarsnsrt^ 
recognized that all probW ii^easi^SUs Äd b« ^nsi^d J^^-' [^^ 
point of view, namely,  as problems of constrainad m5 rd ma      Thus   all V & ?*** 
squares adjustments consist basically of the ndMrnT^n olTlSkt*^ 
the variables of which are subject to oert™n eS? lo^ «*• L>J?iS5rai>ie tora 

called condition equations.    AJg .3 Sue coShu?.on   ?fitr*?* ?* *° 
tion and application.    For instanci, by miy unSSr.  tn        0ne 0f i«1*^«*»" 
satisfaotoiy solution to the hitherto unsaid gene^,^? ^T? h! ^ a 

curve fitting with more than one variable iTarw!        >"fl** of least sqaares 

In this paper we shall enpley matrix aralysis t.i «xt« L «-u   a •. 
genera.! problem oif least squama to the ca^a Sr which the ^ I** »«^rt-DemLng 
the general multi^ariate norml density.    Howw    If d2i\SM!3TMOB> ^ 
also be considered from the minimum VI^^HI'A JJ SKr^ ^8Ult3 "^ 
tional method of least squares and the principal %3ulS^f  tÄoS* '?nVen" 
emerge as special cases of the present development boVe t***™**** 

I 
STATEMENT OF THE GENEJJAL PROBLEM 

Let x», x°. 

equal to the degrees of'^Jd^ ^l^ZC^IvZ^^^/k^^^    * 

relations between the obsr-rvaUons. The total mMwr aCsfä t °et*ine »jp tb/j 
equations «elating bet«remi the ÄservaSonn^T^iS^S!^ «0^^^ 
Let this set of m condition aquation» be denoted by     "       *        en m " r * P- 

(2 s; U (xi'xl> • • • .x,, # ti,, Of, ... , O  ) 

*h«r£ ü,, a, ,  ...  , 

'*',«. m  , 

lp   are the unkgg^I)a-rameters and thQ ^   are adjuste(1 valuea 

1 

mBOffisi'MaiLvs£*maafmtr"i&er- tau «v -/ 
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of the  original observations:  that is 

(2.2) *;   = X|0 +   V|  =   ot»erved   value +   res/duol 

Since   the condition equations raust beirjägpgndtrit, it is necessary that the rela- 
tions   nuP) nAm- p (or more cs^ag^iy n + p Am ip) hold.    If the p parameters 
are not mutually indepe^gKiC the relations existing between them must be in- 
cluded amongJ^-^cSidition equations.    Hence s z.p of the m condition equations 
may iny.Qlfff'parameters only.    Introducing known approximation values a? for the 

^pä'räinetera with 

(2.3) a. * a° + S 

the condition equations can be written 

(2.4) f, i xf 4 v,, ,4^, . . . ,x°n +v„ , Of +*,, flj ♦!,,... ,01 +S  ) 

I   ■   1.2. 

Assuming +h& v's and ß's to be sufficiently small,   (2.U) can be approximated by 
the z&ro and first order terms of its Taylor expansion.    The linearized condi- 
tion  equations '^re thus 

(2.5) £   h  *!     +   ;| ^ h    -    *,. 

in wh3 oh 

(2.6) f«    5x; 

(2.7) 
f         _    5f(o 
r^      9 a? 

(2.8) f.o '*! (*,'.*• *0
n.a?,a;. 

= o , I ■ (,£ m 

Let (Tji   denote the variance of the observation x-.    Then the general prob- 
lem of least  squares as considered by Helmert and Dendng is to determine the 
set  of residuals and parameter corrections which minimizes the sum 

(2.9) 

while satisfying the condition equations  (2.U) or equivalently (2,5).    The quan- 
tity    (J./CT     is the weight of the ith observation with   Olo an artaitrary constant 
termed°the"unit variance or variance of unit weight.    If the observational errors 
have   the normal distribution,  the residuals so obtained are the most probable 
values, and the least squares and maximum likelihood adjustments are equivalent. 
Suppose, however,   that the errors have the general multivariate normal distri- 
bution.   Tenporarily considering the residuals as the actual errors, the distri- 
bution is 

i? - -Ll/T VT0" 'V (2.IO) h(vl.v2,...,vn} ^ (£)*(ir,iP   e    * 

where C is  the covariance matrix of the observations, ICT"'! the determinant of 



O""'.  aaa V the vector 

(2.11) VT» fv,  (j   . »5.^ 
the superscript T denoting transposition.    For this case the act probable set 
of residuals is clearly that which raLnindzes the quadratic font 

(2.12) s = vT cr' v. 
or. a multiple thereof, while satisfying the specified condition equations.    The 
classical method of least squares corresponds to the special   "^se for which  0* 
is diagonal, 1« e., the observations are mutually independer t and are nonaally 
distributed.    Henceforth we shall use the temdnology  •matVxv-'  of least squares' 
in a broad sense to denote the maximum likelihood adjusLr- r 6  of observations 
having the general multivariate normal distribution. 

The set of linearized condition equations (2.5) can be expressed in matrix 
notation by 

(2.13) 'V.V +FAoA   +F0   -  0, 

where in addition to V defined above we have 

(2.14) r*. 
'ml    (ic- 

.»L- 
™0f     ^no4 

f.. 

S ,A« 
«. 

»«• 
',0 

^ *P t.0 
> S,    -J ^   • 

The problem to be considered is to determine, of all possible vectors  V and  A 
which satisfy (2.13), those which result in the minimization of (2.12).    Refer- 
ences [2] and [3] treat basically the case in which   £    is a square,  diagonal 
matrix with (T nondiagonaKcorrelated observations),    in [l],   LUL »nd [8]»   'L 
is also square and diagonal, but the observations are uncorrelated((T diagonal). 
In addition references [UJ and  [6] also consider the case in which several 
observations appear in each of the condition equations but no parameters are 
involved(F,   rectangular and filled and F   nonexistent). 

3.  THE NOfiMAL EQUATIONS 

Problems in constrained minima are most conveniently solved by the method 
of Lagrange multipliers, also called the method of correlates.    Acccr-'ingly let 

(3.1) lr = (A(   A, AJ 
be a vector of m undetermined constant multipliers,   one for each equation of 
constraint (condition equation).   We must then minimize the expression 

(3.2)       s ■ vTcr'v -zA^F^V +£ A + 5). 
Differentiating this with respect to the free vari^oles V   and A  gives 



(3.3) dS -  2(VT0--ATFXo;dV -  2£HodA 

i\ T^f^Js & "-* *»* -*> ** •" Poasible vartauons of dV and 

(3.4) V^-' ~AT F.   = 0, 

(3.5) ZjA.    ■ 0  . 

Solving (3.U) for V gives 

(3.6)       v - <r ICA. 

and since V must satisfy (2.13), we have 

(3.7)   (/^cr^MA  + ^^ +^ = 0. 

The vectors A and ^ can be obtained by solvine (3 5) anrt M 7^ -4    i* 
and then V can be detemined from (3.6).    Co%±££(Tt)hl\?%1<Tat?7' single matrix equation ^.o/.    uoroimng u.5; and (3.7) into the 

(3.8) ^0 
A 

+ ft OT w OJ 0 

gives the general system of normal equations for the arH„«t.-„*      «_      . 
the recognition that (Tia not «n^««-»!?-!    !L P     adjustment.    Except for 

U. INVERSION OF NOHMAL EQUAHOH CQEFFECIENT HITRII 

will then have the ?o™ 0«^*4« equations involve the panunete« only,     jr 

(4.1) 'V. in-» i  'm-$ 8 

O 0 .     .0 

5! 

where the last s  rows are composed of zeros.    The broken line indicate, th. 

1 
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partitioning employed. Partitioning the matrices E , A and F in a correa- 
ponding manner, we have - 

(4.2) £ = 

K «.,   . .. 1^ 
y, (*   . .Ac, 

tn-t Of in-t a2 .  .   tn-i Op 

fc XI O^tn-s.iOj      . .   .    'm-».iap 

t.0, c.«f   . "   '         "p 

^ 

s 

(4.3) 

A, 
A, 

A' 

A2 

Am 

From (U.l) it follows that 

(4.4) Fxa % C * C1 

Fo   - 

O 

O 

Uo 

'■-•   0 

'(n-»*i 0 

■ m 0 

and this substituted into the general normal equations along with (li.2) and 
(U.3)  gives * *"••  ' ~'u 

(4.5) 

or in a 

(4.6) 

IP a Fx'
r 

0 
0 
0 

c c 
■^ convenient 

0 

5: 
0 

^1 'Ar 
te1 0 

^ 
A' + Fo' = 0 

0 A 0 p\ 

0 A! fe] 0 

r A + 0 ■ 0 
0 Jt ffi 0 

This arrangeaent of the normal equations is generally suitable for ellalnation 
solutions.    If such a solution should break down at axw point, i. e      divtai«» 
^<.if

r0-,?CCUr9' " ia ■—^ W to •»•I«*« the row and column where ST 
difficulty occurs and remove them to the end of the matrix,  taking car« to 



SJSi^lfSWSÄ? ^^ al80-    Suoh a ^akdown would happen, for 
;««+-? ?'       Fx.0;/xl„T were singular,  or for that «tter.  if anvr square aubmatrir 
containing an entire left hand section of the diagonal'we«TS" ^"»^ 

coefficieSeL^?^Vna^Sef*1,general «q?"8^«» for the inverse of the 
dSfnlS n2,^i    K      (U^), ^ i8 "'"■■MX that certain matrices to be 
fSioft^       ^ ^  ******** •    Sine, this can always be achieved by proper 

(4.7) N ' 
G -HTOH 

OH 
-L'KH 

HT0 

-0 
L'K 

KTL-' 

in which 

(4.8) 

(4.9) 

(4.IO) 

14.11) 

(4.12) 

(4.13) 

(4.14) 

Fjcr 

FA';G-' 

o 
6 

H 
J 

K        KJ' 
L  -    KF*T 

0 -   J'-VLK 

From (U.6) and (U.7)  the roots of the normal equations «re 

(4.15) A'-- -(G'-H'QH) Fo' f rHrltrC9fn 

(4.i6) A - -(QWtS ~(KTL')F0' 

(4.17) A'-    (L'KWFJHOF* . 

SStJTiirtiV, ' a89Ur8d ^ ^ lndePen«tonc. of the 

So» relations among the «uxiliaiy matrices (U.9)  - (U.U) are 

(4.18) 

(4.19) 

(4 20) 

HGHT ■ J 

KJKT L 

OJO      0 

STLä^^ä«1« «tTi.'TÄSfi aa-Ä« 



parameters. Hence for the general case considered in which the parameters are 
not necessarily independent, it is to be expected that Q be singular and of 
rank p-s. 

' 

5. COVAHTANCE MATRICES EEUTED TO THE ADJUSTMEHT 

Let Y and Z be aibitrary vectors of variates with 

(5.0 yT= (y,  y2 ••  yj 

(5.2) ZT -    (Z,    Z2 

Then clearly 
•Z,) 

(5.3) YZ1 

and we define 

(5.4) o;2T - 

y,2, x 22 

■St^ •jfc'k 

x2. 

Vi 

as the covariance matrix of the vectors Y » Z. It readily follows that 

(5.5) o^r - (a-rTj
T. 

If Y = Z we shall simply refer to (5.U) as the covariance matrix of Y. 

Now let 

(5.6) U0    •    U((X;,X|  ,      , X» J , fl.2.    ..(,, 

be arbitrary functions of the observations x°.    Differentiation gives 

(5.7) du«  -    |«| dx;, 

where u°   ia the partial derivative of u° with respect to x° .    Regarding du*-   AS 
the error in u"   resulting from errors dxj in the observations,  the covariance 
of dug,  du^ and hence that of Ug,  u^ is 

(5.8) ^u-    •    tt US, ^ ^ . 

where (T denotes the covariance of x°, x°, Letting 

n 

_.   



* 

(5.9) üo = 

u, fxf x|.. .  .x'J xf h 
ÜJ ( xf , x2, . ...x»; 

»      /\o:: 
X| 

• *;• ** 

U,(Xf -xf.. .xB
0J X0 a 

we can express  (5.7) as 

(5.io) düo -" (-|-UoT)TdX0  =   U^dX, 

and it follows readily from (5.8) that 

m 

(5.11) O^cüj   =  Ux00-X(>Xo^ -  UXo(7U^ 

is the covariance matrix of U,.    By neans of this result the covariance matrix 
of any vector of functions of the observations can be determined. 

Of particular interest is the covariance matrix of the unknowns in the 
normal equations.    Letting 

(5.12) W0
T - (AT AT  A*J) , 

(5.13) C;  -- fF0'
T0     F0

,Tj. 

the solution of the normal equations can be written 

(5.14) W0 =-N-'C0 . 

Since N   is essentially unaffected by the observational errors and hence may be 
considered constant, we have from (5.1U) 

(5.15) 

with 

dW0 =-N-'dC0 

(5.161 dCo =  (a CoYdX0  --   (£F0"   O   |7^T)TdX0 
ä5?o ^Xc 

But by definition 

(5.17) 
3     eir   r    en 

äX0   0 «•   ' 

and since  F0    involves parameters only. 

(5.8)               *    T   '    ' 0 . 

Hence in (5,16) 

(sis)        dc- (F;; 0 o ;• dx0 

i2 

-I  "     ■ *fc 



■ ■■   ■ ■ ■■   ■■" 

From (U.7),   (5.15) and (5.19) it follows that 

(5.20) dWo 

- HTOH 
OH 

- L-' KH 

^dX0 - MiodX0 

Applying (5.10) and (5.11) yields 

fö-'- 
(5.21) O"..» 

HTQH 

OH 
-L'KH 

vvie 
6'- HTOH 

OH 
-L'KH 

which reduces to 

(5.22) 
'«fe«'oT 

6"'-HT0H 
0 

-L'KH 

O 

O 
O 

-HTKTL-' 

O 
OA'.VJ   OA,AT   CA'^T 

<^ftA'T   ÖAAT    ÖAA,T 

OA1A'T ^fi"- OytfA" 

Conparing this result with (U.7)  shows that the covariance matrix of the un- 
knowns can be obtained directly from the inverse of the normal equation co- 
efficient matrix.    Notice also that the covariance matrices of the vectors A'» A 
and A2,A are zero.    Since by (3.6) V is a function of A alone, it follows that 
the residuals and parameter corrections are mutually independent. 

To derive the covariance matrix of the residuals we use  (3.6),   (U.l), 
(U.3),  (U.8) and (U.15) to write 

0'((G-,-HrQH)F> - (UKHfF,*) (5.23) V   ■   a-FJJA'   - DrA'   i 

Hence by (5.17) and (5.18) 

(5.24) dV - -OV6 -H'OH^jdXo      V^dXo , 

which leads to 

(525) OU       WK   ' DUG' HrQH)D ^ 0TC^rO 

From this and (5.?U) we see that 

(5.26)      v^a ■ <7vx:    vXeavx\ - -aVVT 
t 

We shall next determine the covariance matrix of the adjusted observations. 
This «atrix is of primary iaportance, since conparlne it with the covariance 
matrix of the original obeervatlons enables one to gage the inprovenent effect- 
ed by ths adjustment. By (2.2) we may write 

(5 27) Xo^V 

T 

■3 



where  X   denotes the vector of adjusted observations.    Differentiation gives 

(5.28)      dx = n + y^'Xo, 

and using (5.26) the covariance matrix of  X   turns out to be 

(5.2 9) Oitsr = (T - crVVT. 

This shows that the cowriaiice matrix of the adjusted observations is equal to 
the covariance matrix of the original observations minus that of the residuals. 

T.;o the adjustment, is conpleted It is often required that functions of ths 
adjusted observations,  or more generally of the adjusted observations and para- 
meters, be evaluated and that their variances be determined.    The latter can be 
achieved through a reinterpretation of (5.6) - (5.11).    Let 

(5.30) u,   --  u, <x, .xt .*n.a, ,a. , Op)   , i ' 1.2, 

be aibitrary functions of the adjusted observations and paranaters and let U be 
be the vector of the Uj . Then with obvious notation 

dX 
dA 

or - oVv' DTHrO OVx' a** 
OHO Q. 5^ Cttf 

(5 31) dU -  UxdX   ^ UA dA  = U)x    UA) 

and since by (2.3)   dA - dA * we have 

(5.32) (Tuur'-(UX    Ü4; ato|rx]T füx    UA)
T. 

The covariance matrix of the vector   (XTÄTr   1« readily found to be 

(5.33) 

and this result along with (5.32) may be used to determine the covariance matrix 
of any vector of functions of the adjusted observations and parameters. 

6. DIKECT ADJUSTMENT OF FUNCTIONS OF OBSERVATIOHS 

In section 2 it was assumed that the x^ were the original observations. 
We now relax this requirement by considering the x" as independent functions of 
(perhaps) more elemental observations x" which have a known nultinorml dist- 
ribution. Accordingly we write 

(ei) «f • ♦1f«r;«;.   4p.     <•-•.....  „*» . 

Dlfferentiatir« this gives 

(6.2) dxr -  t ♦.. <tf; 

in which dx° may be regarded as the error in the derived observation x-   result- 
ing from errors di; in the elemental observations S?  .    Wrlting (6.2) in terms 
of residuals rather tlwi üfferentials gives -• / »-» 

— -*■-■ 

14 



C6.3) v.   --    £*   v. 
•ft 

or in matrix notation 

(6.4) V   -   ♦ V . 

iftJü^K!'1^*/'8* we *8SU,,,? that the adJ««ted, derlvBd observations must 
SAvZ S;a^"On.eqUaJl0n8 <!a)-    HowevBr 8ince the di'trtbution of Se 
SSS.rSü^!?1 i8 not na* known* we ■** use the distribution of th« 

uSa J   are      llnearlBed coition equations in terms of the elemental resid- 

(6.5) ^♦^■*- %*+% . o, 

tft^c^t^tl^)'6^*1 re8idUal8 ^ *t<dn^ by ^"^^«f. «*** 
(6.6) s = vra'-'v 

in which  O" is the covarlance matrix of the elemental observations. 

-^4^S'S?**?? procedure of section 3 with regard to (6.5) and (6.6) we 
arrive at the following results.    The most probable elementel residuals a« 

(6.7) V - & *TFJA , 

and A and A are obtained from the normal equations 

(6.8) 
o £ 

fl +• >o 0 

[AJ 0 0 

From (6.U) and (6.7) the derived residuals are 

(6.9) V *&*TFJA 

and since the covariance matrix of the derived observations is 

(6.io)   or -- ♦a"*T, 

equations (6.8) and (6,9) can be written 

(6.11) 
F; \A] \Fo roi 
0 A 

-h 
p. ' 0 

(6.12) (TFJA 
But these results are identical respectively »nth (3.6) and (3,8) which ware 
obtained by minimizing VT0"''V subject to the sane condition equations.  Hence 
it is possible to adjust derived observations directly and without modification by 
the procedures developed earlier. From this we night infer that the derived 
observations also have a multinomial density with covariance matrix given by 
(6.10). A direct proof of this is given in the next section. 

18 



If tta* derlfod rwlduals are obtained from (6.11) and (6.12), the problem 
remain» of doUmdnlr« the elemental residuals.    This can be accoiroUshed by 
multlplorlng (6.9) by a <frT(«|><fr ^r1 which gives, according to (6.7), 

(6.13) v ■ ^♦'(♦cr^rv 
The interesting feature of this result is that it is the sane thing as the least 
squares adjustment of the elentental observations subject to condition equations 
given by (6.U) in which the vector of derived residuals is assumed to be known. 
Hence once the derived residuals have been obtained,    the elemental residuals 
can be detersdnect from a new 1MI% squares adjustment in which the condition 
equations are the relations boiueen the elemental and derived observations. 

The results of this section free us of the sometimes cunfcersome restriction 
of having to adjust the elemental observations directly.    Moreover, by Judi- 
cious formulation of a given problem and choice of derived observations effi- 
cient solutions can often he developed.    Sometimes, for instance, it is pos- 
sible to calculate a single covariance matrix for the derived observations, 
which can be used for a series of different,  successive adjustments.    In other 
cases efficient approximation solutions can be developed.    For example.  If the 
diagonal terms of 0* strongly predominate,  it may be possible to Ignore the 
nondiagonal terms completely without altering the final results significantly. 
An application of this principle in the field of photogrammetzic trlangulatlon 
is given by Brown [150   • 

7.  JOmT DISTEEBUTION CF INDEPENDENT LINEAR COMBINATIONS CF VARIATES FROM A 
MULTIMORMAL DENSITY 

For present purposes we shall consider 9  and  V as vectors of the actual 
errors in the elemental and derived observations respectively.    By hypothesis 
the distribution of the elemental errors is 

We shall show that the joint, marginal distribution of the derived errors, 
V - $V, is a imiltinormal density with covariance matrix given by (6.10). 
Equation (6.U) nay be rewritten as 

(7.2) ♦. V,   + ^V, 

in which ^ is the square matrix defined by the partition 

(7.3) • • (♦, :♦,; 

til       $12 

til       4>ZZ 

Al       ^« 

A. 
An 

An 

Anw 

An« 

Am 

A; 
A» 

* nk 

Slnee ths v's are independent, we may assume that the variates have been so 

_ 
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ordered that   $,   is nonsingular.   Solving  (7.2) for  V,    in terms of the n 
derived errors and remaining k-n»lemental errors gives 

(7 5) V,   -   €?(V- *2VZ) , 

and according to (7.U) this allows us to write 

(7.6) 
*.-' 

I 
v 

av 
a_ vT 
aw./  . 

Letting 

>■■..,  ...   - ^ 

the Jacobian of the transformation C7.5) is 

(7.8) aV    ' 

and the joint distribution of the Vs and the last k-n v's is thus 

(7.9) 9 O ,vfe, ...,vn,vn+, ,...,5t ;   .   hit, ,%,...,9k) ijlfyl 

- M* (i*;'i2ia-'i)i et^o-'v, 
which according to (7.6) may be written 

(T.io) g  *(&)*(l*;1 Isl&-'i)t   e-^VT^fl"(Vr V,T)T. 

This is a multinormal density in which 

(7.11) a-'   a, 
ff 

[♦?' 

I 
or,,   dt 

ft,       Oil 

-/ ♦7'  '■♦7'#i 

o       i 

Üt^ iHr^lf^116 ^r1*"?6 ^^ of the ^^   (VT ^2
T)T.    The middle 

SSS^^lS^rr.1!37  ^   ***M™* to ^ conformabll with the sub- 

gratiS'o^l^.f^rff i0n-,?f *he v;s in C.IO) can be obtained by inte- 
S^rS Sltrib^tion Jh/811 kfWn ( Mood   Cl6]   ) thls wil1 lead 2 a new 
SSi^itlhel^st k-n roSsOV^dan0? ^^ ^ WhiCh 0an be 6btained ^ observe that ^ coluinns 0f ^«    To obtain n from A^we 

(7.12) 
Lo       i , 

«, 
0    i. 

and invert (7.U) applying the reversal ml».    The reduced result is 

—— 



■ ■ ; .-.   .- ■■:'.■■   : 

(7.13) 
o,6;(©.T + «>2$,^+*,o:2*; + *,ok*;     trft+eM 

*, *J+ 05AT 
o*« 

which by the partitioning of  $ and Q" can be written more compactly as 

(7.i4) n 
0(rt 

where   (T?   is defined by 

(7.15) o-. ^12 

Hence by (7.Hi) the covariance matrix of the v's In the marginal distribution la 

(7.i6)        a • a>&<s>T. 

which agrees with (6.10). The marginal distribution of the derived errors is 
thus 

(7.17)    Mv,^....,^, - ^-Lj^/o-./ji e-*VT<T'V 

which is the result we set out to establish.    Since the covariance matrix of 
the set of variates is unique,  this result could have been established directly 
from (6.10)  and the fact stated above that a marginal distribution from a 
multinormal distribution is also a multinormal distribution. 

_ 

8.  EVALUATION OF THE QUADrATIC FOEM OF THE  RESIDUALS 

While S can always be computed directly from the definition (2.12), this 
is not always convenient, especially if O" is nondiagonal and difficult to invsrt 
or if the vector of residuals is not otherwise required. It is possible to de- 
rive alternate expressions for S which involve neither V nor & and which are 
essentially byproducts of the solution of the normal equations. Thus, starting 
with the definition (2.12)  and employing (5.23)  and (U.9) yields 

(8.1) s -- vTcr'v -- oTigirj a"(aFx[
TA) -■ A,TOA' . 

A  simpler form results from this if we  successively enjploy the  relations 

(82) GA' = -IF0'+ F^A),    A-F^-A-F^,    F^ A =   - F0
2. 

which follow directly from the set of normal equations  (!..6).     The reduced result 
is 
(8 3) - A'TF'- A2TF 2Tc2 

0 - A1 F, , 

which corresponds to the expression given by DeMing  [llj   (equation 17,  p.   57) 
for the general uncorrelated case.    This  result provides a convenient  starting 
point  for the derivation of still other expressions for S   which »ay be useful 
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in special cases.    For the general problem,  however,  it is doubtful whether a 
simpler or more convenient formula than (8.3)  exists. 

When the original condition equations have been linearized by Taylor's 
series,  a sequence of iterations of the solution may be necessary to remove the 
influence of neglected higher order terms.    In this case the final value of the 
vector  V   is the sum of the initial V  and those obtained from successive itera- 
tions.    The same is true of the vectors   A ,  A   and    F0   .    Equation (8.3) is 
not strictly valid when A  and   F0   result from iterations.    It should, however, 
provide an accurate approximation in most cases.    An exact expression for  S when 
N "TA^

10113
 kfve been performed may be derived from the second equality, of (8.1). 

Let  Ul   )j   and  \fu}\   be the values of AIT   and F^   corresponding to the i      itera- 
tion with the values for the initial solution corresponding to i=0.    Then 

(8.4) s  - BT (J B , 

where Q   is the vector 

(8.5) B
T
= t  lA'^CFJ); . 

^o 0 

The principal merLt of this result is that it does not require the inversion of 
O" . If this is not a serious problem, it may be preferable to employ the first 
equality of (8.1), using the final vector of residuals. 

9. TESTS OF SIGNIFICANCE FOR THE ADJUSTMENT 

Dendng (1935) [l3] has shown that the quadratic form of the residuals ob- 
tained from the least squares adjustment of uncorrelated, normally distributed 
observations has a X2 distribution with r - n - n0 degrees of freedom (see first 
paragraph of section 2 of this report). By means of a transformation of the re- 
siduals it can be shown that this result holds for the correlated case as well. 
This fact may be used to provide a test of significance for the adjustment. Es- 
sentially, the test determines whether the estimate of unit variance obtained 
from the adjustment is conpatible with the pre-established value. We set 

(9.0     X,2 ^ S 

and determine the probability P(\2  > xl ; r degrees of freedom) from a table of 
the X  distribution. If this probability is unreasonably small (or lai^e, 
though this would rarely occur in practice), a poor adjustment is indicated and 
an effort should be made to determine and, if possible, correct the cause. Among 
the principal reasons for an unsatisfactory X* result, are: 

(a) Corputational errors: Though mention of this possibility nay seem 
trivial, it is felt that the correctness of the  conputations should be 
established before seeking other explanatiomi.  This is especially true 
if the adjustment is routine and has been consistently successful before, 
or if P(X > X, ) tums out to be so extreme that the other possibilities 
to be mentioned seem unlikely. 

(b) Uncorrected systematic errors in the observations: An investigation 
into all phases of the measuring operation it necessary to evaluate this 
possibility. Special instrumental calibrations provide the means for 



correcting such "errors'. It should be pointed out that a satisfactoiy X2 

result does not, in itself, preclude the existence of systematic errors, 
especially if they are constant or nearly so. 

(c) Inadequate or incorrect condition equations: The condition equations 
represent a mathematical model of a physical situation and as such are 
satisfactory only if they actually approximate the true situation to a 
degree conqpatible with tho accuracy of the measurements. In many cases, 
as measuring accuracy increases, more complex models become necessary in 
order to account for previously insignificant factors. If a model is in- 
adequate, it may well show up in the x2 test. However, since inadequate 
models can result from systematic errors, the remarks of (b) hold here 
also. 

An adequate set of condition equations may lead to an inadequate set of 
linearized condition equations due to the influence of neglected higher 
order terms. The residuals or parameter corrections may be so large that 
ordinary iterations actually cause the solution to diverge or to converge 
to an incorrect result. When such dificulties result from poor approxima- 
tion parameters alone, the method of 'danped least squares1 developed by 
Levenberg (I9I4I4) [17] may be useful (this is discussed somewhat in the next 
section), while if the residuals also are too large, a gradient method of 
minimization described by Curry (19UU) [18] may lead to a satisfactoiy 
solution. 

Aside from inadequate condition equations, which may be regarded as 
poor approximations, incorrect equations, which do not approximate the 
physical situation at all, may be included among the set of condition 
equations. Incorrect condition equations result from outright mistakes 
or from faulty analysis and can be expected to affect the X2 result ad- 
versely. 

In corplex measuring situations the most difficult problem may not lie 
in the actual adjustment, for this can be done straightforwardly by the 
methods of this paper, nor in obtaining correct condition equations, but 
rather in the determination of the degrees of freedom of a set of observa- 
tions and hence of the number of condition equations. We may speak of an 
incoi.plete or overconplete set of condition equations according to whether 
less or more than the correct nui.ber are chosen. Assuming the individual 
condition equations to be correct, an overcomplete set will lead to a 
singular set of nonral equations. An inconplete &et, on the other hand, 
may yield a solution and may or may not result in a poor X2 test, depend- 
ing upon the inportance of the omitted condition equations. 

(d) Inaccurate covariance matrix of the observations: In order to make the 
X: test it is necessary to assume that (T is accurately known. Actually, 
in practice, an estimate of CT , generally derived from replicated obser- 
vations, is used. In order to have confidence in such an estimate the 
degrees of freedom upon which the estimates of the elements of O* are 
based should be reasonably large, say  greater than 20. In nary problems, 
the eleKents of the covariance matrix of the observations may be known 
precisely to a constant multiple, Oi»,  the variance of unit weight: that 
is (T- OooOl    where 0£ is known precisely. In this case only (£• need be 
estimated, and an alternate test of significance described below nay be 
used to conpare the least squares estimate of unit variance with a given 
prior estimate. 

Fron the least squares adjustment under consideration we may obtain an 
estimate (OCJi of o;, with (note that if CT-is unknown, 8 • V^'V 1 Ct,V,<r"'V ) 
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(9,2) ((Too), 
s 
r r 

Hence 

(9.3) r r, 

in which,  for the sake of uniformity, we have used r,   rather than r to denote 
the degrees of freedom.    Now let (0^0)0 be an estimate of   Oio obtained from a 
least squares adjustment independent of that from which (C7i0),   was obtained. 
(Note that the usual,   straightfoiward method of computing the variance of a set 
of repeated observations from the sum of squares of deviations from the mean is 
essentially an estimate based upon a least squares adjustment.)    Letting the 
degrees of freedom associated with such an independent estimate be r0, we may 
write 

(9.4) —       =       -=—    • 

We then form the ratio for the F distribution 

(9.5) E    = x'/n (otJi 
'o 

ll' 

xJTc (Q:J0 

The value P(F A F0 j r, , ro degrees of freedom) provides a test of the coirpat- 
ibillty of the two estimates of unit variance and should be used in place of 
the X? test when the unit variance is not accurately known beforehand. When 
r0  is large the x2  and F tests lead to similar results. 

When it is not possible to obtain an independent estimate of     Oio,  the 
above tests cannot be applied.    In such cases the adjustment is employed to ob- 
tain the estimate given by (9.2).    Indeed,  this may even be the primary purpose 
for the adjustment.    It must be kept in mind,  however,  that for such an estimate 
to be valid it must be known that such factors as have been mentioned above do 
not influence the result significantly. 

Mistakes can often be localized and the nature of systematic errors and model 
deformities revealed,   through a study of the individual residuals and parameters. 

Although the x1  and F tests described are applicable to the great majority of 
problems involving physical measurements,  more general methods are required when 
the conditions underlying their application are not fulfilled.    In this regard we 
shall merely mention that such methods are provided by tests based upon the Wish- 
art and related distributions,    A derivation of the Wishfc-^t distribution together 
with a study of its properties and applications is given cy Wilks  (19U3)   [19] . 

10. GENEBAL REMARKS 

Consideration of the general least squares adjustment and related problems 
In terms of matrix algebra provides a broad,  uncluttered concept of the proced- 
ures and operations necessary in the reduction.    Since all problems in least 
squares are merely special cases  of the general problem,   there is no need for 
the classification of problems into distinct categories.    It is probably this 
coopartnenting of least squares which so long delayed  the  solution of the gener- 
al curve  fitting problem and has otherwise  retarded the application and inter- 
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pretatlon of the method. 

In some problems the distinction between observations and parameters is not 
clear cut,     A parameter may have a physical interpretation and be capable of 
direct measurement.    In such cases an approximation value of the parameter is 
sometimes obtained from a direct measurement.    But if such a quantity is actual- 
ly measured and has a probability distribution, it should,  strictly speaking, be 
treated as an observation.    In practice, however,  a measured quantity is often 
regarded as a parameter,  rather than an observation, when it has a very large 
variance compared with that which would result from calculating the quantity 
from the other observations.    It might thus be conjectured that in a least 
squares adjustment a parameter may be regarded as an observation with infinitely 
large variance.    It turns out that this consideration leads to the same results 
as the original development,  providing it be postulated that an observation of 
infinite variance contributes nothing to the degrees of freedom of a set of ob- 
servations. (Since variates must have finite variances in order to have the mul- 
tinormal distribution,   this discussion should be considered only in a heuristic 
sense).    This concept allows the formulation of approximation procedures in 
which observations with relatively large variances are treated as parameters. 
Conversely,   treating parameters as observations with relatively large variances 
can lead to useful results.    Levenberg (l9Uli)   [17],  for example, used this con- 
cept implicitly in deriving the method of   »damped least squares, ' which is use- 
ful when the usual least squares solution fails to converge due to poor approx- 
imation parameters.    In essence,   Levenberg showed that by treating the param- 
eters as observations with appropriate variances (a method for calculating 
optimum variances was given)  the solution can be made to converge to the correct 
result.    Normally, with each iteration the variances of the parameter residuals 
increase until ultimately they no longer influence the solution.    Although 
Levenberg derived damped least squares only for the special case in which a sin- 
gle,  independent  observation appears in each condition equation (0"  diagonal-  F 
square,  diagonal),  the method can readily be extended to hold for the general   *° 
case.    Incidentally,  this provides an illustration of the fact that many results 
which have been proven for a specific area of least squares actually hold (per- 
haps with slight modification)  for the general case as well. 

The least squares adjustment is capable of the following geometrical intei>- 
pretation.     Consider an n-dimencional coordinate system with orthogonal axes 
v,,  v2,   ...   , vn.    Then the quadratic form   S^V'CT'V,  being positive definite, 
will represent an n-dimensional ellipsoid (a detailed study of the n-dimensional 
ellipsoid is given by Wilks (19U3) [19] ).' The ellipsoid is centered at the ori- 
gin.    If a  is diagonal,  the axes of the ellipsoid will coincide with the coor- 
dinate axes,  while for O"  nondiagonal the ellipsoid will be in a tilted orienta- 
tion.    It is clear that by a rotational coordinate transformation,  a tilted 
ellipsoid can be reoriented into a standard position.    Such a transformation is 
specified by   V " RV where   R   is an n* n matrix whose rows  (or columns) are com- 
posed of the normalized characteristic vectors of  CT.    Thus a problem involving 
correlated observations can be reduced to one involving derived observations 
which are uncorrelated.    The dimensions of the hyperelllpsoid are,  of course, 
unaffected by a rotation.    In fact,  the lengths of the axes are dipectly propor- 
tional to the square roots of the characteristic roots of  (T .    The constant of 
proportionality which determines their absolute dimensions Is sli-nly    f"2  .    it 
thus follows that the volume of the ellipsoid is directly proportional to S"72 

(the complete expression for the volume Is given by Eurington and Hay  (1953) [?0] X 
Therefore,   ndniraiElng   S   is equivalent to mlnlaiting the volume of the ellipsoid, 
It being understood, naturally,  that the condition e4uation constraints must be 
satisfied by some point on the ellipsoid.    To sli^llfy mtters we may assums 
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that any parameters have been eliminated from the linearized condition equations, 
laaving r relations between the residuals Alone. Each condition equation then 
represents a hypeiTslane, and the residuals must lie on the intersection of the r 
hyperplanes. Now consider the family of hyperellipsoids defined by varying S . 
The orientation and relative dimensions of such ellipsoids will be constant, and 
all will be centered at the origin. We may think of the family as being formed 
by the balloonlike expansion of an initial infinitesimal ellipsoid. Let the 
ellipsoid expand until it becomes tangent to the intersection of the condition 
equation hyperplanes. For this point all the condition equations are satisfied 
and the volume of the ellipsoid (and consequently S ) is obviously raLniraum- 
Hence the coordinates of the point of tangency give the most probable residualB, 
Thus, from a geometrical point of view the only difference between the adjust- 
ment of correlated and uncorrelated observations lies in the orientation of the 
hyperellipsoid relative to the coordinate axes. To go somewhat further with the 
interpretation we may suppose that the ellipsoid has been rotated into a standaid 
position» Then the ellipsoid can be transformed to a hypersphere by a siirple 
stretch transformation. The most probable set of residuals is then given by the 
coordinates of the point on the intersection of condition equation hyperplanes 
which is closest tc the origin. The distance of this point from the origin 
represents the sum of the squares of the residuals. This interpretation is espe- 
cially convenient for problems in conventional least squares, since the ellipsoids 
are in standard position to begin with and the necessary stretch is readily accom- 
plished by scaling the observations. 

Duane C, Brown 
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SUPPLEMENTARY REMARKS 

After the present rejport had been readied for publication, the author 
encountered the two additional matrix treatments of least squares which follow: 

[21]     C.  R.  Rao,   "ADVANCED STATISTICAL METHODS IN BICMETEEC RESEAH3H," Wiley 
(1952), ch. 2,3. 

[22]     0. Kerapthorne,   "THE DESIGN AND ANALYSIS OF EXPERIMENTS," Wiley (1952), 
pp. 5U-66. 

Both of these references consider the special case for which F.     is equal to 
the unit matrix and O is merely a multiple of the unit matrix. " Rao extends his 
results to include the case for which some of the condition equations involve 
parameters  only.    However,  his  F'     submatrix for this more general -^se is 
again the unit matrix, 

G. H. Weiss of BRL has pointed out that the principal result of Section 7 
is to be found in the reference 

[23]     H.  CramSr,   "MATHEMATICAL METHODS OF STATISTICS,"  Princeton Univ.   Press 
(19U6), pp. 312-313. 

Cramgr obtains the result quite simply by showing that the characteristic func- 
tion of the transformation is that of a raultinormal distribution with covar- 
iance matrix of the form (7.16). 

It has been suggested that a reference on inversion by the method of sub- 
matrices would be appropriate in connection with the derivation of equation 
(U.7).    This is provided by 

[2U3    Frazer,  Duncan,  Collar,  "ELEMENTARY MATRICES," Cambridge Univ.  Press 
(1950),  pp.  112-113. 

Also in regard to (U.7) it seems worthwhile to mention that the derivation is 
considerably simplified if the relations  (U.18) - (U.20)  are employed.    This is 
also true for the reductions leading to equations (5.22),   (5.25)  and  (5.33). 
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